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A B S T R A C T

The origin of the Changbaishan volcanic province (CVP) has been considered to correlate with the subduction of 
the Pacific plate, so it is necessary to dynamically reconstruct the subduction history of the Pacific plate towards 
and beneath the CVP since the Cenozoic for probing the mechanism of the CVP. Many parameters affect slab 
subduction dynamics, so how to choose these parameters reasonably is the urgent issue to be solved during the 
reconstruction. A lot of analogue and numerical models have been used to study the effects of these parameters, 
but almost all of them have not considered a slab subduction history. In addition, seismic tomographic models 
have manifested that there is a high-speed anomaly zone extending over 1300 km within the mantle transition 
zone (MTZ) beneath the CVP. The zone is belived to consist of the Pacific slab in its eastern part and a segment of 
delaminated continental lithosphere (DCL) in its western part, bounded by approximately 120◦E. A reasonable 
geodynamic model should reproduce both the Pacific slab and the DCL. Accordingly, in order to provide a 
reference for selecting geodynamic model parameters, we initially develop a series of three-dimensional (3D) 
thermochemical geodynamic models with data assimilation, in which several parameters are varied indepen-
dently. These parameters encompass the Clapeyron slopes (γ410 and γ660) and thicknesses (δh410 and δh660) of the 
410-km and 660-km discontinuities, the viscosities in the lower mantle (ηlw), the mantle transition zone (ηmtz) 
and the middle part of the lower mantle (ηmlw), seafloor age (to), the densities of the oceanic crust (representing it 
with the buoyancy ratio B6) and asthenosphere (Δρasth), as well as the density jump across the 660-km discon-
tinuity (Δρ660). Subsequently, we primarily investigate how these parameters influence the westward movement 
distance, sinking depth, and structure of the Pacific slab, as well as whether geodynamic models incorporating 
these parameters can predict the high-speed anomaly zone. Finally, for reasonably reproducing the Pacific slab 
and the DCL beneath the CVP, we propose a suggested range of these parameters: γ660 may lie within the range of 
− 2.0 to − 3 MPa/K; ηlw and ηmlw may range from 30 to 50 and should not exceed 75; B6 may be set to − 0.48, 
which corresponds to a mean density of 3.0 g/cm3 for the Earth’s oceanic crust; the lower limit of the to may be 
adopted; ηmtz may be 1.0 to 2.5; Δρasth should adopt a reasonable and more negative value; and Δρ660 may be set 
to a value of 10 to 15 %.

1. Introduction

The Changbaishan volcanic province, comprising the volcanoes of 
Tianchi, Paotaishan and Wangtian’e, is situated in the border region 
between China and North Korea (Fig. 1). These volcanoes have erupted 
vigorously numerous times since the Miocene era and have been 

experiencing unrest in the last 20 years, thus posing a risk of potentially 
disastrous eruptions (Liu et al., 2015; Acocella et al., 2015; Wei et al., 
2013; Xu et al., 2012; Hong et al., 2007; Wu et al., 2007). The origin of 
the CVP is complex, and so far, three main conceptual models/mecha-
nisms have been proposed, inferred from seismic and geochemical re-
sults. The three models/mechanisms are related to the deep dehydration 
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of a stagnant Pacific slab in the MTZ, the piling up and thickening of a 
stagnant Pacific slab in the MTZ, and the upward escape of oceanic 
asthenosphere material entrained by the subducting Pacific slab through 
slab gaps in the MTZ (Du and Lei, 2019; Guo et al., 2018; Chen et al., 
2017; Zhao et al., 2017; Tian et al., 2016; Wei et al., 2015; Liu and Zhou, 
2015; Tang et al., 2006, 2014; Lei et al., 2013). All three mechanisms 
highlight the importance of Pacific plate subduction. Consequently, a 
reasonable reconstruction of the Pacific slab subduction history is 
conducive to probing deeply into the origin of the CVP.

Numerous analogue and numerical simulations have demonstrated 
that multiple parameters affect slab subduction dynamics. These pa-
rameters include the rheology of the subduction interface; the thickness, 
density, rheology, chemical composition, length, and width of the sub-
ducting slab; the thickness, density, and rheology of the overriding slab; 
the duration of subduction; the viscosity and density of the mantle; 
trench retreat velocity; and the properties of upper-mantle seismic dis-
continuities (Christensen, 1996; Bina et al., 2001; Kincaid and Griffiths, 
2003; Funiciello et al., 2006; Stegman et al., 2010; Capitanio and Fac-
cenda, 2012; Sharples et al., 2014; Chertova et al., 2018; Sheng et al., 
2018; Li et al., 2014, 2019a; Hu and Gurnis, 2020; Király et al., 2020; 
Xue et al., 2020; Zhong and Li, 2020; Peng et al., 2021a; Behr et al., 
2022; Chen et al., 2022). These simulations shed light on the general 
understanding of slab subduction dynamics. For instance, convergence 
speeds, subducting plate velocities and trench retreat rates increase with 
decreasing viscosity at the subduction interface. Particularily, a decrease 
in viscosity by ~2 orders of magnitude can lead to an increase in 
convergence speeds by ~1 order of magnitude (Androvičová et al., 
2013; Čížková and Bina, 2013; Ratnaswamy et al., 2015; Pokorny et al., 
2021; Behr et al., 2022). The larger the trench retreat rate, the smaller 
the dip angle of a subducting slab (e.g., Griffiths et al., 1995). Conse-
quently, the greater the probability of the slab stagnating in the MTZ, 
meaning that it becomes more difficult for the slab to penetrate the 660- 
km discontinuity and enter the lower mantle (e.g., Crameri and Lithgow- 
Bertelloni, 2018; Zhong and Gurnis, 1997; Kincaid and Olson, 1987; 
Christensen, 1996). The 410-km discontinuity accelerates a slab sub-
duction (e.g., Solheim and Peltier, 1994a; Tackley et al., 1994) while the 
660-km discontinuity blocks the slab into the lower mantle (e.g., 
Christensen and Yuen, 1984, 1985; Fukao et al., 1992; Ita and King, 
1994; Bina and Helffrich, 1994; Ito and Yamada, 1982; Čížková and 
Bina, 2013). If a low ratio of subducting slab-to-mantle viscosity exists, 
shorter plates promote trench advance and slab rollover geometries, 
whereas longer plates produce continuous trench retreat and backward 
slab draping geometries. Conversely, for a high ratio of subducting slab- 

to-mantle viscosity, the opposite occurs (Xue et al., 2020). However, 
these models primarily simulate the free subduction of a slab without 
considering the slab’s subduction history, making it challenging to 
provide in-depth insights into the dynamics of a specific slab subduction.

The Pacific plate is very special. It has lain in the MTZ and moved 
westward a considerable distance, exceeding 1200 km from the Japan 
Trench beneath the CVP, as evidenced by seismic tomography studies (e. 
g., Li et al., 2008; Li and van der Hilst, 2010; Wei et al., 2012; Tao et al., 
2018; Lu et al., 2019). Therefore, in order to provide a reference for 
selecting geodynamic model parameters that are used to reproduce the 
subduction process of the Pacific plate, in this paper, we initially 
construct a series of 3D thermochemical geodynamic models that 
assimilate the time-dependent data from the plate reconstruction model 
of Müller et al. (2016). Then, we simulate the effects of several param-
eters on the Pacific slab subduction dynamics, focusing particularly on 
the westward movement distance, sinking depth and structure of the 
Pacific slab, as well as whether the DCL can be predicted. Finally, we 
propose guidelines for selecting these parameters to reasonably repro-
duce the seismic observations beneath the CVP.

2. High-speed anomaly zone beneath the CVP

Seismic tomography has been considered the most important and 
widely used method for mapping a slab within the mantle. In general, 
the slab is colder and denser than the surrounding mantle, and therefore 
exhibits a high seismic velocity anomaly. This anomaly serves as the 
most important basis for determining the morphology of the slab. 
Ideally, seismic tomography could map a slab in the mantle completely 
and precisely. However, in practice, it is difficult to achieve this suc-
cessfully due to the non-uniform distribution of seismic stations and 
hypocenters, the heterogeneity of the Earth’s interior, the depth- 
dependent sensitivity of seismic phases, and the resolution limitations 
of seismic imaging methods. We have collected 22 seismic models, 
which cover both the Japan subduction zone and Northeast Asia, pub-
lished over the last 15 years. These models include the FWEA18 P and S 
(Tao et al., 2018), GAP_P4 (Obayashi et al., 2013; Fukao and Obayashi, 
2013), GYPSUM P and S (Simmons et al., 2010), MIT08 (Li et al., 2008; 
Li and van der Hilst, 2010), LLNL_G3Dv3_Vp (Simmons et al., 2012), 
TX2019slab P and S (Lu et al., 2019), S40RTS (Ritsema et al., 2011), 
Savani (Auer et al., 2014), SEMUCB_WM1 (French and Romanowicz, 
2014), SEMum (Lekić and Romanowicz, 2011), smean2 (Jackson et al., 
2017), IVAN2011 P and S (Koulakov, 2011), Weiwei2012 (Wei et al., 
2012), 3D2018-08Sv (Debayle et al., 2016), S2_9EA (Kustowski et al., 
2008), HMSLS06 Pand S (Houser et al., 2008), SAW642ANB (Panning 
et al., 2010), and SEISGLOB2 (Durand et al., 2017). It is found that, 
among these models, TX2019slab, Weiwei2012, GAP_P4, FWEA18, 
LLNL_G3Dv3_Vp and MIT08 map the Pacific slab clearer. When exam-
ining the three latitude profiles across the CVP for each model 
(Figs. S1–S3), they all exhibit very similar high-speed anomaly zones 
located within the MTZ beneath the CVP, suggesting slight variations in 
the high-speed structure from south to north. If the westernmost position 
of the high-speed anomaly zone, as marked by the green dash line in 
Fig. S1, is considered as that of the Pacific slab, it reveals that the Pacific 
slab has very close westernmost positions in the three latitude profiles 
for each seismic model, with the exception of TX2019slab P model 
(Figs. S1a–S3a). Among these models, the maximum difference among 
the westernmost positions inferred from the three profiles of each model 
is ~60 km, observed in the TX2019slab S model. Relative to the west-
ernmost position, the differences among the bottom depths are greater. 
The largest difference in bottom depths is larger than 100 km, observed 
in both the TX2019slab S and FWEA18 P models (Figs. S1–S3; Table S1). 
The westernmost positions revealed by the global models of TX2019slab 
and LLNL_G3Dv3_Vp are significantly closer to the west compared to 
those indicated by regional models, with the maximum difference 
exceeding 800 km for the Weiwei2012 and TX2019slab S models. This 
may stem from differences in the horizontal resolutions of these models. 

Fig. 1. Location of the Changbaishan volcanic province (CVP). The red tri-
angles stand for volcanoes. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)
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For instance, the Weiwei2012 model boasts a resolution of ~1.2◦ (Wei 
et al., 2012), while the TX2019slab S model has a resolution of ~5◦ (Lu 
et al., 2019). Furthermore, the TX2019slab and LLNL_G3Dv3_Vp models 
also exhibit westernmost positions that are significantly further to the 
west compared to the global models of MIT_08 and GAP_P4, with the 
maximum difference exceeding 600 km for the MIT_08 and TX2019slab 
S models. Because of the close horizontal resolutions of ~5◦ for 
TX2019slab, LLNL_G3Dv3_Vp and MIT08, the reason for this significant 
difference remains unclear. Notably, there is a noticeable difference in 
the westernmost positions between the regional models of Weiwei2012 
and FWEA18, with the maximum difference exceeding 200 km, despite 
the fact that they have comparable resolutions (Weiwei2012: 1.2; 
FWEA18: 50–80 km) (Figs. S1–S3; Table S1).

It is surprising that there are significant differences among the 
westernmost positions of the Pacific slab mapped by these seismic 
models, even though they have comparable horizontal resolutions. 
Accordingly, we do not think that it is reasonable for taking the west-
ernmost position of the high-speed anomaly zone in the MTZ as that of 
the subducting Pacific slab. Actually, the regional models with much 
higher resolutions, especially FWEA18, show that the notable velocity 
difference is between the west and the east at a longitude of ~120◦E 
(Cyan line; Figs. S1c, S1e, S1f). Therefore, we believe that the eastern 
side is attributed to the Pacific slab, while the western side is likely 
caused by other mechanisms such as the delamination of continental 
lithosphere. MIT08 is a global model with a horizontal resolution of ~5◦, 
yet it maps the Pacific slab very clearly, comparable to Weiwei2012 and 
FWEA18. These models (MIT08, Weiwei2012 and FWEA18) indicate 
that the westernmost positions of the Pacific slab are situated at 
120.07◦E - 120.75◦E (Figs. S1c, e, f, h), 120.01◦E - 120.90◦E (Figs. S2c, e, 
f, h), and 119.94◦E - 121.59◦E (Figs. S3c, e, f, h) across the three latitude 
profiles, with differences of approximately 55 km, 75 km and 135 km, 
respectively, which are comparable to their horizontal resolutions. 
Furthermore, the bottom depths of the Pacific slab are located at 
660–740 km, 660–750 km, and 660–740 km, with differences of less 
than 100 km (Table S2). In this study, we take the arithmetic mean of the 
velocity anomalies from the three models as the observable shown as 
Fig. 2 whose position is located at latitude 41.67◦E, as indicated in 
Fig. 1. The observable indicates that the high-speed anomaly zone in the 
MTZ beneath the CVP is caused by two distinct components. One is the 
Pacific slab, which lies within the MTZ with its westernmost position at 
approximately 120◦E and a bottom depth that is mostly shallower than 
800 km. The other component, named DCL in this paper, connects with 
the westernmost end of the Pacific slab and extends westward towards 
approximately 114◦E. The latter is likely related to the detachment of 
continental lithosphere. Additionally, the global models of TX2019slab, 
MIT08, and GAP_P4 reveal that the Izanagi slab does not make contact 
with but instead lies beneath the high-speed anomaly zone (Fig. S4).

3. Model setup

In order to explore the effects of several parameters on the dynamics 
of Pacific plate subduction, we have established 3D thermochemical 
geodynamic models using data assimilation technique (Hu et al., 2016, 
2017; Peng et al., 2021a, 2021b) to simulate the subduction history of 

the Pacific plate since the Cenozoic. The mantle is assumed to be 
incompressible and follows the Boussinesq approximation, whereby the 
thermochemical mantle convection is governed by the equations for the 
conservation of mass, momentum and energy and the advection of 
chemical particles. 

∇ • u→= 0, (1) 

− ∇P+∇ •
[
η
(
∇ u→+∇T u→

) ]
+(ρmαΔT+Δρc) g→= 0, (2) 

∂T
∂t

+ u→•∇T = κ∇2T, (3) 

∂C
∂t

+ u→•∇C = 0, (4) 

where u→ is the velocity, P is the dynamic pressure, η is the dynamic 
viscosity, ρm is the density of the ambient mantle, α is the thermal 
expansion coefficient, ΔT is the temperature anomaly, Δρc is the 
compositional density anomaly, g→ is the gravitational acceleration, and 
C is the composition.

The CVP is located ~127–129◦E and ~ 41.33–42.67◦N (Fig. 1). Our 
study area is a very small region, covering only a range of ~2◦ and ~ 
1.5◦ in longitude and latitude, respectively. However, the model domain 
is set to be sufficiently wide, with the nearest vertical boundary being 
>2000 km away from any part of the study area, in order to avoid 
artificial return flow from side walls (e.g., Liu and Stegman, 2011; Zhu, 
2014). The model is discretized with 865 × 193 × 161 nodes in longi-
tude, latitude and depth, respectively. The mesh resolution is ~46 km in 
latitude, ~4–22 km in longitude and ~ 16 km near and within the CVP. 
The depth resolution is ~7 km near the surface, 10 km between 20 km 
and 710 km, gradually increasing to ~35 km at a depth of ~1800 km, 
and remaining at this resolution until the core-mantle boundary. We 
utilize the 3D spherical finite element code CitcomS (Moresi et al., 1996; 
Zhong et al., 2000, 2008; Tan et al., 2006) to simulate Pacific slab 
subduction and mantle convection by solving the governing equations. 
The basic model parameters are listed in Table 1.

The past plate motion and seafloor age (Fig. 3), derived from the 
plate reconstruction by Müller et al. (2016), are used to update the 
surface velocity boundary condition and the upper thermal boundary 
layer, respectively, at every time step. All other boundaries are free slip. 
The core-mantle boundary has a fixed temperature, which is set at 
2500 ◦C, a realistic value near the boundary (e.g., Steinberger and 
Calderwood, 2006; Mao and Zhong, 2018). The open source software 
GPlates (www.gplates.org; Gurnis et al., 2012) is utilized to reconstruct 
the surface velocity and seafloor age over an interval of 1 Ma. At any 
given time within this interval, they are interpolated linearly.

The temperature structure of oceanic plates satisfies the half-space 
cooling model (Turcotte and Schubert, 2014) and is updated by assim-
ilating the seafloor age at each time step. Continental lithospheric 
temperature is assumed to obey the plate cooling model (Turcotte and 

Fig. 2. Seismically inferred high-speed anomaly zone beneath the Chang-
baishan volcanic province (red triangle) used in this study. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Table 1 
Model parameters.

Parameter Value

Earth’s radius, R 6371 km
Mantle thickness, h 2867 km
Mantle density, ρm 3340 kg/m3

Gravitational acceleration, g 9.8 m/s2

Thermal diffusivity, κ 10− 6 m2/s
Thermal expansivity, α 3 × 10− 5 K− 1

Mantle temperature, Tm 1300 ◦C
Temperature difference across mantle 2500 ◦C
Reference viscosity, η0 1021 Pa⋅s
Rayleigh number, Ra 6.35 × 108

Maximum viscosity cutoff, ηmax 1024 Pa⋅s
Minimum viscosity cutoff, ηmin 1018 Pa⋅s
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Schubert, 2014). The lithospheric thickness is set to 100 km, which is 
comparable to that of Northeast China (An and Shi, 2006), and the 
bottom lithospheric temperature is set to the mantle temperature of 
1300 ◦C (e.g., Kumar and Gordon, 2009; Jiménez-Díaz et al., 2012).

Different chemical compositions are considered in our thermo-
chemical geodynamic models. The compositional density anomaly is 
calculated using the ratio method (e.g., Hu et al., 2016, 2017, 2018; 
Peng et al., 2021a, 2021b). 

B =
Δρc

α0ρ0ΔT
, (5) 

where B is the buoyancy ratio, an input parameter that varies with 
different compositions, Δρc the compositional density anomaly, ρ0 the 
reference density, α0 the reference thermal expansivity, and ΔT the 
temperature contrast across the mantle.

The continental lithosphere is composed of a ~ 20-km thick upper 
crust, a ~ 15-km thick lower crust and a ~ 65-km thick mantle litho-
sphere (Fig. S5). According to the ak135 (Kennett et al., 1995) or iasp91 
(Kennett and Engdahl, 1991) models, the average density of the upper 
crust is ~2.72 g/cm3, and that of the lower crust is ~2.92 g/cm3, 
indicating an average density of continental crust of ~2.82 g/cm3; the 
mantle lithosphere is a chemically buoyant layer with a density of 

Fig. 3. Plate motions and seafloor age since 50 Ma inferred from the plate reconstruction of Müller et al. (2016).
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~3.33 g/cm3, which results in an almost purely thermal mantle litho-
sphere. The oceanic plate consists of a ~ 7-km thick weak oceanic crust 
and a ~ 20-km thick chemically buoyant layer that mimics a basaltic 
crust (Fig. S5). The weak crust, which is neutrally buoyant, exhibits high 
viscosity far away from a trench (> ~300 km) but a low viscosity of 1019 

Pa⋅s near the trench (≤ ~300 km), thus acting as a lubricating layer to 
decouple a subducting plate from an overriding plate (e.g., Hu et al., 
2016, 2017, 2018; Peng et al., 2021a, 2021b). This weak crustal layer 
serves a similar function of a sticky air layer, which is crucial for pro-
ducing asymmetric subduction and realistic topography (Crameri et al., 
2012). The buoyant crustal layer lies beneath the weak oceanic crust and 
has a total buoyancy equivalent to that of a 7-km thick basalt crust with 
a density of 3.0 g/cm3. When the chemically buoyant oceanic crust is 
subducted to 120 km or deeper, its composition changes to eclogite 
following the basalt-to-eclogite phase transformation, and consequently, 
its total buoyancy becomes equivalent to that of a 7-km thick eclogite 
layer with a density of 3.68 g/cm3. When a new subduction zone forms, 
an arc-like weak zone is created on the overriding side (Hu et al., 2018). 
Therefore, following previous investigators (e.g., Hu et al., 2016, 2017, 
2018; Peng et al., 2021a, 2021b), we arrange an arc-like weak zone 
positioned between the continental and oceanic plates to mimic the 
properties of Earth’s subduction zones. This zone is charactered by a 
viscosity of 1019 Pa⋅s, a density of 2.92 g/cm3, a thickness of ~40-km, 
and a length ranging from 300 km (top side) to 350 km (bottom side) 
(Fig. S5). It aids in decoupling the subducting oceanic plate from the 
overriding continental plate on both sides of the subduction zone during 
the subduction process.

The 3D viscosity used varies with depth, temperature and composi-
tion (e.g., Hu et al., 2018; Peng et al., 2021a, 2021b) following 

η = η0 • C • exp
(

Eη

T + Tη
−

Eη

Tm + Tη

)

, (6) 

where η is the effective viscosity, η0 is the depth-dependent background 
viscosity, C is the compositional multiplier, Eη is the activation energy, 
Tη is the temperature offset, T is the temperature and Tm is the mantle 
temperature. The background viscosity η0, activation energy Eη and 
activation temperature Tη vary within four different depth ranges of 
0–100 km, 100–300 km, 300–660 km and 660–2867 km. For a reference 
model, the background viscosity of these layers is 1020 Pa.s, 1020 Pa.s, 
1021 Pa.s (ηmtz) and 3 × 1022 Pa.s (ηlw), respectively. The activation 
energy Eη is 25, 42, 25 and 17 kJ/mol, respectively, for the four layers. 
The temperature offset Tη of these layers is 100, 100, 300 and 300 ◦C, 
respectively. Composition affects viscosity by introducing a multiplier C, 
which is a geometric average for all the compositions within an element, 
to the pre-exponential factor of viscosity (e.g., Hu et al., 2018; Peng 
et al., 2021b).

The initial temperature and viscosity are the outputs of Model 1, a 
reference model presented by Peng et al. (2021a), at 50 Ma. Model 1 of 
Peng et al. (2021a) was a 3D global thermochemical model incorpo-
rating data assimilation and ran from 200 Ma, under the constraints of 
plate motion history and seafloor age reconstructed by Müller et al. 
(2016). In other words, Model 1 reconstructed the global subducting 
slabs and mantle structures since 200 Ma. There are two primary reasons 
why we utilize the outputs of Model 1 from Peng et al. (2021a). Firstly, 
our regional models, regardless of starting at 200 Ma, 150 Ma, or 120 
Ma, are unable to reproduce the Izanagi slab, which significantly affects 
the Pacific plate subduction dynamics and the formation of stagnant 
slabs within the MTZ (Peng et al., 2021a). Secondly, the structures 
produced by Model 1 are similar to those derived from seismic tomog-
raphy on a large scale, but it remains challenging to delve into regional- 
scale issues in-depthly. Furthermore, the stagnant slab within the MTZ 
originates from the Pacific plate, which likely starts to subduct at 20–30 
Ma (Mao and Zhong, 2018), beneath the CVP, thus our goal can be 
achieved by running geodynamic models since 50 Ma.

4. Results

As mentioned above, our primary focus is on the impacts of several 
parameters on the westward movement distance, sinking depth, and 
structure of the Pacific slab. Additionally, we examine whether geo-
dynamic models incorporating these parameters can well predict both 
the Pacific slab and the DCL within the modern mantle. Consequently, 
we provide a brief overview of previous studies and present our detailed 
modeling results herein.

4.1. Effects of uppermantle seismic discontinuities

There are two main global seismic discontinuities in the upper 
mantle: the 410-km and 660-km discontinuities, which have been 
considered as phase transition boundaries (e.g., Collier et al., 2001; 
Ringwood, 1969). The 410-km discontinuity represents the exothermic 
boundary of the α-olivine to β-spinel transition, featuring a positive 
Clapeyron slope. Consequently, negative buoyancy is generated and 
attaches to a subducting slab near this discontinuity, accelerating the 
slab’s subduction into the MTZ and slightly enhancing the trans-
portation of upper mantle materials and the penetration of the slab 
through the 660-km discontinuity (Solheim and Peltier, 1994b; Tackley 
et al., 1994). However, some investigators hold opposing views 
regarding the effects of the olivine-spinel transition on the penetration of 
the 660-km discontinuity (e.g., Zhao et al., 1992; Steinbach and Yuen, 
1992). The Clapeyron slope (γ410) and thickness (δh410) of the 410-km 
discontinuity range from 1.0 to 3.8 MPa/K (Akaogi et al., 1989, 2007; 
Katsura and Ito, 1989; Chopelas, 1991; Bina and Helffrich, 1994; Mor-
ishima et al., 1994; Lebedev et al., 2002) and from 2 to 40 km (Akaogi 
et al., 1989; Katsura and Ito, 1989; Petersen et al., 1993; Yamazaki and 
Hirahara, 1994; Xu et al., 2003; Tibi and Wiens, 2005; Zou, 2018; Li 
et al., 2019b, 2022; Vinnik et al., 2020). The 660-km discontinuity is the 
endothermic boundary of the transition from ringwoodite to bridg-
manite and magnesiowüstite. This boundary, generally speaking, has a 
negative Clapeyron slope. Consequently, positive buoyancy is generated 
and attaches to a subducting slab near the discontinuity, hindering the 
slab’s sinking into the lower mantle. Some investigators have considered 
this to be the primary cause of stagnant slabs in the MTZ (e.g., Chris-
tensen and Yuen, 1984, 1985; Fukao et al., 1992; Ita and King, 1994; 
Bina and Helffrich, 1994; Ito and Yamada, 1982; Čížková and Bina, 
2013), while others do not believe that the buoyancy resulting from the 
phase transition at this boundary is sufficient to compensate for the 
density of a cold subducting slab (e.g., Christensen, 1996; Ita and King, 
1998; Fukao et al., 2009; King, 2007; Yanagisawa and Yamagishi, 2005). 
The Clapeyron slope (γ660) and thickness (δh660) of the 660-km 
discontinuity range from − 0.4 to − 6 MPa/K (Ito and Yamada, 1982; 
Ito and Takahashi, 1989; Ito et al., 1990; Akaogi and Ito, 1993; Chopelas 
et al., 1994; Bina and Helffrich, 1994; Lebedev et al., 2002; Hirose, 
2002; Katsura et al., 2003; Fei et al., 2004; Litasov et al., 2005a, 2005b; 
Akaogi et al., 2007; Ghosh et al., 2013; Kojitani et al., 2016) and from 
~2 km to ~70 km (Wang and He, 2020; Zhang et al., 2019; Li et al., 
2013; Wang and Niu, 2010; Tibi and Wiens, 2005; Xu et al., 2003; Castle 
and Creager, 2000; Yamazaki and Hirahara, 1994; Benz and Vidale, 
1993; Petersen et al., 1993; Revenaugh and Jordan, 1991). The δh660 is 
between ~35 and 70 km in Northeast China (Li et al., 2013; Ye et al., 
2011; Wang and Niu, 2010). These results indicate that the two dis-
continuities have the wide ranges of the Clapeyron slopes and thick-
nesses. In general, the smaller the γ410, the smaller the force attaching to 
a subducting slab near the 410-km discontinuity, resulting in a smaller 
acceleration of the slab. Consequently, the slab penetrates the 660-km 
discontinuity into the lower mantle to a lesser extent (Čížková and 
Bina, 2013; Kincaid and Olson, 1987); the smaller the |γ660|, the easier 
the slab penetrates the 660-km discontinuity, and the deeper the slab 
sinks into the lower mantle. It favors predicting a stagnant slab in the 
MTZ mapped by seismic tomography, using a geodynamic model that 
incorporates a γ660 ranging from − 1.5 to − 8 MPa/K (− 1.5 to − 3.0 MPa/ 
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K, Ma et al., 2019; − 2.0 MPa/K, Mao and Zhong, 2018; − 4.0 MPa/K, 
Tackley et al., 1993; − 6 to − 8 MPa/K, Christensen and Yuen, 1984, 
1985; − 5 to − 6 MPa/K, Ita and King, 1994; − 3 to − 6 MPa/K, King and 
Ita, 1995; − 2.8 to − 5.6 MPa/K, Christensen, 1996; -4 MPa/K, Davies, 
1995; − − 4 MPa/K, Zhong and Gurnis, 1994), without considerating the 
410-km discontinuity, while when considering the 410-km disconti-
nuity, the γ410 generally takes 3 to 4 MPa/K and the γ660–2 to − 6 MPa/K 
(Peng et al., 2021a; Yang et al., 2018; King et al., 2015). It may well 
reproduce the stagnant Pacific slab in the MTZ beneath East Asia using 
geodynamic models that consider either γ660 = − 1.5 to − 3 MPa/K and 
δh660 = 40 km (Ma et al., 2019) or γ660 = − 2 MPa/K and δh660 = 40 km 
(Mao and Zhong, 2018) in the absence of the 410-km discontinuity. 
Alternatively, when considering the 410-km discontinuity, it may use 
models with either γ410 = 4 MPa/K, γ660 = − 2 MPa/K and δh410 = δh660 
= 64 km (Peng et al., 2021a) or γ410 = 3 MPa/K and γ660 = − 3 MPa/K 
(Yang et al., 2018) in the presence of the 410-km discontinuity. These 
studies have provided us with basic knowledge of the effects of the two 
discontinuities on slab subduction dynamics, but in the meantime, we 
find that previous workers (e.g., Christensen and Yuen, 1984, 1985; 
Čížková and Bina, 2013; Peng et al., 2021a; Yang et al., 2018; King et al., 
2015; Ma et al., 2019; Mao and Zhong, 2018) have presented a wider 
range of Clapeyron slopes and thicknesses for the 410-km and 660-km 
discontinuities, aiming to replicate the stagnant slab structure in the 
MTZ. Consequently, it is essential to clarify the impacts of these two 
discontinuities on the dynamic process of Pacific plate subduction, as 
well as the slab structure, westward movement distance, and sinking 
depth within the mantle. We (Zhu et al., 2024) conducted this work 
using the models M1 – M24 listed in Table 2 and submitted the results to 
a Chinese journal. Here, we briefly summarize the key findings. The 
westernmost positions and bottom depths of the Pacific slab predicted 
by the models M1 – M24 that incorporate varying values of γ410, γ660, 
δh410 and δh660, are plotted in Fig. 4a–e. We found that (1) the γ410, to a 
certain degree, affects the westward movement distance of the Pacific 
slab in the mantle, while it slightly influences the sinking depth of the 
slab. As the γ410 decreases, the average movement distance increases 
gradually, and the sinking depth becomes slightly shallower. The 
maximum differences are ~80 km and ~ 50 km for the distance and 
sinking depth, respectively, over a range of γ410 from 0 to 6 MPa/K; (2) 
with the increase of |γ660|, the effect of γ410 gradually weakens. When 
|γ660| ≥ 4 MPa/K, the effect of γ410 can be almost ignored; (3) the γ660 
has significant effects on both the westward movement distance and 
sinking depth of the Pacific slab in the mantle. When |γ660| ≤ 5 MPa/K, 
the average slab westward movement distance increases as |γ660| in-
creases. However, when |γ660| > 5 MPa/K, the situation reverses; that is, 
the larger the |γ660|, the smaller the average slab westward movement 
distance. The sinking depth consistently becomes shallower with the 
increase of |γ660|. The maximum differences exceed 300 km and 600 km 
for the distance and sinking depth, respectively, over a range of γ660 
from − 1 MPa/K to − 6 MPa/K; (4) both δh410 and δh660 have slight ef-
fects on the dynamic processes of the Pacific slab and the slab structure 
within the mantle; (5) a geodynamic model that merely considers the 
effects of both 410-km and 660-km discontinuities may predict the 
westernmost position of the Pacific slab in the modern mantle reason-
ably, but it struggles to reproduce the slab’s sinking depth reasonably 
and the DCL shown in Fig. 2.

4.2. Effects of the lower mantle viscosity

The viscosity jump (ηlw) across the 660-km discontinuity, that is, the 
ratio of the lower mantle viscosity to the upper mantle viscosity, 
significantly affects the behavior of a slab’s penetration through the 660- 
km discontinuity. In general, a slab’s subduction velocity decreases near 
the 660-km discontinuity as the viscosity jump increases, which makes it 
increasingly difficult for the slab to penetrate the discontinuity. There-
fore, an increase in viscosity in the lower mantle favors the stagnation of 
the slab in the MTZ (e.g., Čížková and Bina, 2013; Funiciello et al., 2004; 

Kincaid and Olson, 1987; Christensen and Yuen, 1985; Crameri and 
Lithgow-Bertelloni, 2018). However, what is a reasonable value for the 
viscosity jump? This problem has not yet been solved until now. 
Different values have been proposed using various methods and data-
sets. The jump has been estimated to be 10–316 for interpreting the 
geoid anomalies (Hager, 1984; Hager et al., 1985; Hager and Richards, 
1989; King and Masters, 1992; Ricard et al., 1993; Liu and Zhong, 2016; 
Liu et al., 2021), 1–100 for interpreting the variations in post-glacial sea- 
level (Cathles, 1975; Nakada and Lambeck, 1989; Tushingham and 
Peltier, 1992; Mitrovica and Peltier, 1993, 1995), 30–250 inferred from 
the inversion of convection-related observables (free-air gravity har-
monics, the excess ellipticity of the CMB and horizontal divergence 
components of plate motions) (Forte and Mitrovica, 2001), and 2–250 
inferred from joint inversion of geoid/free-air gravity anomalies and 
post-glacial relative sea-level variations (Wu and Peltier, 1983; Forte 
and Mitrovica, 1996; Mitrovica and Forte, 1997; Paulson et al., 2007). 
Some researchers have inferred that the viscosity does not jump signif-
icantly across the 660-km discontinuity but rather displays high vis-
cosity in the middle of the lower mantle. The high viscosity zone is 
estimated to be ~40–210 times the viscosity just below the disconti-
nuity, as inferred from a joint inversion of convection-related observ-
ables and glacial isostatic adjustment (Mitrovica and Forte, 2004), and 
~ 35–80 times the viscosity of the MTZ, as inferred from a joint inver-
sion of whole-mantle P-wave velocity, S-wave velocity, and density 
variations (Rudolph et al., 2020). A more complex relationship may exist 
between the viscosities above and below the 660-km discontinuity. The 
viscosity may increase significantly, decrease significantly, or remain 
nearly unchanged (Kido et al., 1998). These results present a very wide 
range of possible viscosity jumps, making it difficult for us to choose a 
reasonable value to well reproduce the Pacific slab beneath the CVP. 
Therefore, it is necessary to further study the effects of lower mantle 
viscosity.

We set the viscosity jump ηlw = 30, 50, 100, 150 and 200, corre-
sponding to the models M25 – M29 listed in Table 2, for exploring its 
effects. It is noted that the temperature deviation (δT) is relative to the 
mantle temperature Tm, and we commonly use the − 50 ◦C isotherm to 
determine both the westernmost position and bottom depth in this 
study, unless specially mentioned. Since the − 50 ◦C isotherm is not 
distinguishable for ηlw ≥ 100 (Fig. 5), the − 250 ◦C isotherm is used in 
this section. The predicted bottom depths of the Pacific slab (estimated 
based on the − 250 ◦C isotherm) are 1055, 980, 900, 860 and 820 km for 
ηlw = 30, 50, 100, 150 and 200, respectively (Figs. 4f and 5). This in-
dicates that the sinking depth of the Pacific slab gradually becomes 
shallower with increasing viscosity jump, consistent with previous 
studies (Čížková and Bina, 2013; Crameri and Lithgow-Bertelloni, 
2018), as expected. However, the westernmost positions are 123.58◦E 
(M25), 125.48◦E (M26), 127.27◦E (M27), 126.81◦E (M28) and 126.48◦E 
(M29) (Figs. 4f and 5), indicating that the westward movement distance 
of the Pacific slab, with the increase of ηlw, decreases initially and then 
increases. Among these, the maximum distance is found at ηlw = 30. 
These results reveal that an increase in the lower mantle viscosity could 
cause a more stagnant Pacific slab in the MTZ, but at the same time, 
shorten its westward movement distance in the mantle.

The dynamic process beginning at 40 Ma (Fig. 6) shows that an in-
crease in ηlw leads to a decrease in both the mantle flow velocity and the 
Pacific slab subduction velocity. The former primarily results in a 
reduction in the sinking and westward movement velocities of the Iza-
nagi slab, while the latter affects the Pacific slab. However, the decrease 
in the Pacific slab subduction velocity slows down its westward move-
ment in the mantle, but it still moves significantly faster than the Izanagi 
slab. Consequently, there is spatial overlap between the western end of 
the Pacific slab and the eastern end of the Izanagi slab. For a small ηlw (e. 
g., ≤ 50), the Izanagi slab sinks faster. When the westernmost end of the 
Pacific slab arrives at the easternmost position of the Izanagi slab, the 
latter has already sunk below the former, therefore, the Izanagi slab does 
not hinder the westward movement of the Pacific slab. However, since 
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Table 2 
Geodynamic model parameters.

Model 410 km 660 km ηlw B6 to ηmtz ηmlw Δρasth %

γ410 MPa/K δh410 km γ660 MPa/K δh660 km Δρ660%

Effects of γ410 (Zhu et al., 2024)
M1 0 20 -2 20 8 30 − 0.48 1 1 30 0
M2 1 20 − 2 20 8 30 − 0.48 1 1 30 0
M3 2 20 − 2 20 8 30 − 0.48 1 1 30 0
M4 3 20 − 2 20 8 30 − 0.48 1 1 30 0
M5 4 20 − 2 20 8 30 − 0.48 1 1 30 0
M6 5 20 − 2 20 8 30 − 0.48 1 1 30 0
M7 6 20 − 2 20 8 30 − 0.48 1 1 30 0
M8 0 20 − 6 20 8 30 − 0.48 1 1 30 0
M9 1 20 − 6 20 8 30 − 0.48 1 1 30 0
M10 2 20 − 6 20 8 30 − 0.48 1 1 30 0
M11 3 20 − 6 20 8 30 − 0.48 1 1 30 0
M12 4 20 − 6 20 8 30 − 0.48 1 1 30 0
M13 5 20 − 6 20 8 30 − 0.48 1 1 30 0
M14 6 20 − 6 20 8 30 − 0.48 1 1 30 0

Effects of δh410 (Zhu et al., 2024)
M15 2 40 − 2 20 8 30 − 0.48 1 1 30 0
M16 2 60 − 2 20 8 30 − 0.48 1 1 30 0

Effects of γ660 (Zhu et al., 2024)
M17 2 20 − 1 20 8 30 − 0.48 1 1 30 0
M18 2 20 − 3 20 8 30 − 0.48 1 1 30 0
M19 2 20 − 4 20 8 30 − 0.48 1 1 30 0
M20 2 20 − 5 20 8 30 − 0.48 1 1 30 0

Effects of δh660 (Zhu et al., 2024)
M21 2 20 − 2 40 8 30 − 0.48 1 1 30 0
M22 2 20 − 2 60 8 30 − 0.48 1 1 30 0
M23 2 20 − 2 80 8 30 − 0.48 1 1 30 0
M24 2 20 − 2 100 8 30 − 0.48 1 1 30 0

Effects of ηlw (this study)
M25 2 40 − 4 40 8 30 − 0.48 1 1 30 0
M26 2 40 − 4 40 8 50 − 0.48 1 1 30 0
M27 2 40 − 4 40 8 100 − 0.48 1 1 30 0
M28 2 40 − 4 40 8 150 − 0.48 1 1 30 0
M29 2 40 − 4 40 8 200 − 0.48 1 1 30 0

Effects of B6 (this study)
M30 2 40 − 4 40 8 30 0 1 1 30 0
M31 2 40 − 4 40 8 30 − 0.24 1 1 30 0
M32 2 40 − 4 40 8 30 − 0.72 1 1 30 0
M33 2 40 − 4 40 8 30 − 1 1 1 30 0

Effects of to (this study)
M34 2 40 − 4 40 8 30 − 0.48 0.5 1 30 0
M35 2 40 − 4 40 8 30 − 0.48 0.75 1 30 0
M36 2 40 − 4 40 8 30 − 0.48 1.25 1 30 0
M37 2 40 − 4 40 8 30 − 0.48 1.5 1 30 0

Effects of ηmtz (this study)
M38 2 40 − 4 40 8 30 − 0.48 1 2.5 30 0
M39 2 40 − 4 40 8 30 − 0.48 1 5.0 30 0
M40 2 40 − 4 40 8 30 − 0.48 1 7.5 30 0
M41 2 40 − 4 40 8 30 − 0.48 1 10.0 30 0

Effects of ηmlw (this study)
M42 2 40 − 4 40 8 30 − 0.48 1 1 50 0
M43 2 40 − 4 40 8 30 − 0.48 1 1 100 0
M44 2 40 − 4 40 8 30 − 0.48 1 1 150 0

Effects of Δρasth (this study)
M45 2 40 − 4 40 8 30 − 0.48 1 1 30 − 1
M46 2 40 − 4 40 8 30 − 0.48 1 1 30 − 2
M47 2 40 − 4 40 8 30 − 0.48 1 1 30 − 3

(continued on next page)
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an increase in ηlw decreases the velocity of horizontal mantle flow and 
Pacific slab subduction, the model with a larger ηlw (e.g., 50) predicts a 
shorter westward movement distance of the Pacific slab compared to the 
model with a smaller ηlw (e.g., 30) (Figs. 5 and 6). In addition, as ηlw 
increases, the continental lithosphere delamination gradually in-
tensifies, but the delaminated material does not adhere to the western-
most end of the Pacific slab (Fig. 6). For a large ηlw (e.g., ≥ 100), the 

Izanagi slab sinks more slowly. When the westernmost end of the Pacific 
slab arrives at the easternmost position of the Izanagi slab, the latter has 
not fully sunk below the former, resulting in contact between the two 
slabs. Consequently, the Izanagi slab impedes the westward movement 
of the Pacific slab (Fig. 7). The impeding effect of the Izanagi slab, 
combined with the decrease in horizontal mantle flow velocity and the 
Pacific slab subduction velocity due to the increased ηlw, leads to a 

Table 2 (continued )

Model 410 km 660 km ηlw B6 to ηmtz ηmlw Δρasth %

γ410 MPa/K δh410 km γ660 MPa/K δh660 km Δρ660%

Effects of Δρ660 (this study)
M48 2 40 − 4 40 4 30 − 0.48 1 1 30 0
M49 2 40 − 4 40 10 30 − 0.48 1 1 30 0
M50 2 40 − 4 40 15 30 − 0.48 1 1 30 0

Note: ηmlw is the non-dimensional viscosity at the 1500–2500 km depth; Δρasth is the density contrast of oceanic asthenosphere relative to ambient mantle.

Fig. 4. Westernmost posotions and bottom depths of the Pacific slab predicted by geodynamic models M1 – M50 listed in Table 2. The positions and depths for 
models M25 to M29, shown in (f), are determined based on the − 250 ◦C isotherm, while those for the other models are determined based on the − 50 ◦C isotherm.
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significant shortening of the westward movement distance of the Pacific 
slab. For instance, the westward movement distance for ηlw = 100 is 
approximately 300 km shorter than that for ηlw = 30. Furthermore, little 
delamination occurs in this scenario (Fig. 7).

Seismic tomography has revealed that the westernmost end of the 
Pacific slab beneath the CVP has arrived at ~120◦E, and its bottom 
depth is almost shallower than 800 km (Table S2; Fig. 2). The models 
M25 (ηlw = 30) and M26 (ηlw = 50) predict the westernmost positions at 
117.94◦E and 118.87◦E, and the bottom depths at 1100 km and 1065 
km, respectively. This suggests that the two models may reproduce the 
westernmost position well, but they are unable to reasonably predict the 
bottom depth of the Pacific slab beneath the CVP. In addition, none of 
the models with varying ηlw predict the DCL, with the westernmost po-
sition at ~114◦E (Fig. 2), on the west of the Pacific slab. These findings 
suggest that a geodynamic model solely considering the viscosity jump 
ηlw may predict well the westernmost position of the Pacific slab in the 
modern mantle, but it struggles to reproduce the slab sinking depth and 
the DCL revealed by seismic tomography.

4.3. Effects of the chemically buoyant layer

As mentioned in Section 3, we incorporate a chemically buoyant 
layer to mimic a basaltic crust. Specifically, the chemical buoyancy of 
this layer is equivalent to that of a 7 km-thick Earth’s basaltic oceanic 
crust. It is commonly understood that the average density of Earth’s 
oceanic crust is ~3.0 g/cm3, but this density can vary widely between 
2.7 and 3.1 g/cm3 (Carlson and Raskin, 1984; Carlson and Herrick, 
1990). Therefore, in order to probe the effects of the chemically buoyant 
layer, we set the buoyancy ratio B6 is 0 (no chemical buoyancy; M30), 
− 0.24 (M31), − 0.48 (M25), − 0.72 (M32) and − 1.0 (M33) to mimic the 
chemical buoyancy due to a 7 km-thick basaltic layer with density of 
3.34, 3.17, 3.0, 2.83 and 2.63 g/cm3.

These models predict a very similar present-day Pacific slab structure 
beneath the CVP (Fig. 8), with a minimum cross-correlation coefficient 
of 0.97 (Table S3). The predicted westernmost positions and bottom 
depths are 117.46◦E and 1090 km (M30), 117.85◦E and 1100 km (M31), 
117.94◦E and 1100 km (M25), 117.72◦E and 1100 km (M32), and 
117.56◦E and 1095 km (M33), respectively (Figs. 4g and 8). Initially, as 
the chemical buoyancy increases (the B6 becomes more negative), the 
westernmost position moves eastward, then slightly westward, indi-
cating that the westward movement distance decreases first and then 
slightly increases, while the bottom depth hardly varies with the 
chemical buoyancy of the layer. The maximum difference among these 
predicted distances is ~40 km, between M30 and M25. These results 

suggest that the chemically buoyant layer has minimal effects on the 
structure and sinking depth of the Pacific slab but slight effects on its 
westward movement distance.

All of these models also predict very similar structure, westernmost 
position and bottom depth of the Pacific slab at the same subduction 
period (Figs. S6 and S7), indicating that the chemically buoyant layer 
does not significantly affect the dynamics of the Pacific slab subduction 
beneath the CVP. The continental lithospheric delamination increases 
with the enhancement of the chemical buoyancy of the layer (i.e., a more 
negative B6). The delaminated lithosphere typically attaches to the top 
but not the westernmost end of the Pacific slab, so these models cannot 
predict the DCL, as shown in Fig. 2. Accordingly, B6 is not a crucial 
parameter, and the chemical buoyancy of the layer may be disregarded 
when reproducing the Pacific slab beneath the CVP.

4.4. Effects of slab age

The age of a slab determines its negative thermal buoyancy, which 
may affect significantly the dynamics of slab subduction. Many 
reseachers have studied the effects of slab age on its subduction dy-
namics (e.g., Capitanio et al., 2007; Capitanio, 2013; Garel et al., 2014; 
Ribe, 2010; Agrusta et al., 2017; Crameri and Lithgow-Bertelloni, 2018; 
Chen et al., 2022). They found that, in general, the older a subducting 
slab is, the greater its density and intensity become, and consequently, 
the larger its negative thermal buoyancy and subduction velocity in the 
mantle, which favors the slab’s subduction into the deep mantle. 
Accordingly, compared to a younger slab, an older slab reaches the 660- 
km interface faster and is more likely to cause both trench retreat and 
the penetration of the 660-km interface into the lower mantle. When a 
younger slab arrives at the 660-km discontinuity, it may initially fold or 
buckle within the MTZ for a certain period due to resistance from the 
post-spinel transition and the increase in viscosity, but it eventually 
penetrates the 660-km interface into the lower mantle. In contrast, an 
older slab may initially penetrate the 660-km interface into the lower 
mantle, but afterwards bend and lie down above the interface, stag-
nating wihin the MTZ for a certain period, and eventually penetrate the 
interface into the lower mantle again. Obviously, the seafloor age (to) 
derived from the plate reconstruction of Müller et al. (2016) has un-
certainty. Therefore, in order to probe the effects of slab age on the 
Pacific slab subduction dynamics, we have established several geo-
dynamic models in which the slab’s ages are 50 %, 75 %, 100 %, 125 %, 
and 150 % of to, corresponding to the models M34, M35, M25, M36, and 
M37, respectively, as listed in Table 2.

These models predict a very similar structure but noticeably different 

Fig. 5. Present-day (0 Ma) Pacific slab structure in the mantle predicted by the models M25 - M29. The thick line stands for the isotherm where temperature de-
viation (δT) relative to the mantle temperature (Tm) is equal to − 250 ◦C. The isotherm interval is 200 degrees Celsius. The temperature.
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westernmost positions and bottom depths of the Pacific slab in the 
modern mantle beneath the CVP (Fig. 9). The positions and bottom 
depths are 115.90◦E and 965 km (M34), 117.02◦E and 1025 km(M35), 
117.94◦E and 1100 km (M25), 118.19◦E and 1160 km (M36), and 
118.42◦E and 1215 km (M37), respectively (Figs. 4h and 9). Accord-
ingly, the westward movement distance decreases and sinking depth 
deepens gradually with increasing slab age. The maximum differences 
between the distances and the sinking depths predicted by these geo-
dynamic models are ~210 km and ~ 250 km, respectively. These results 
indicate that a younger slab is more likely to stagnate in the MTZ and 
move westwardly a longer distance in the mantle, consistent with pre-
vious studies (e.g., Čížková and Bina, 2013; Zhong and Gurnis, 1997). 

All of the predicted westernmost positions are located to the west of the 
position (~120◦E; Fig. 2) mapped by seismic tomography, indicating 
that the uncertainty in slab age does not significantly affect the pre-
diction of the westernmost position of the Pacific slab beneath the CVP. 
However, the minimum sinking depth of ~950 km, corresponding to the 
model with half of t0 (M34), is notably larger than the sinking depth (<
800 km; Fig. 2) of the modern Pacific slab beneath the CVP, suggesting 
that it is challenging to reproduce the sinking depth inferred from 
seismic tomography solely by varying the slab’s age.

Slab age has a significant impact on the Pacific slab subduction dy-
namics beneath the CVP. Compared to an older slab, a younger slab is 
more conducive to breaking off, stagnating in the MTZ, and moving a 

Fig. 6. Dynamic process of the Pacific slab subduction predicted by the models (a) M25 with ηlw = 30 and (b) M26 with ηlw = 50 along latitude 41.67◦N.
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longer distance westward (Fig. 10). Furthermore, a younger slab may 
cause more delamination of the continental lithosphere, and the 
delaminated lithosphere may adhere to the westernmost end of the 
Pacific slab (Fig. 10). Accordingly, a younger slab is more likely to 
reproduce the DCL on the west of the Pacific slab beneath the CVP, as 
inferred from seismic tomography (Fig. 2).

4.5. Effects of the viscosity in the MTZ

In this section, we probe the effects of the viscosity in the MTZ (ηmtz) 
on the dynamics of Pacific slab subduction beneath the CVP. Here we 
increase the ηmtz from 1.0 (M25) to 2.5 (M38), 5.0 (M39), 7.5 (M40) and 
10 (M41) for our goal. These models predict a similar modern Pacific 
slab structure (Fig. 11). The westernmost positions and bottom depths 
are 117.94◦E and 1100 km (M25), 117.42◦E and 1115 km (M38), 
117.11◦E and 1120 km (M39), 116.77◦E and 1105 km (M40), and 

Fig. 7. Dynamic process of the Pacific slab subduction predicted by the models (a) M27 with ηlw = 100 and (b) M29 with ηlw = 200 along latitude 41.67◦N.
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116.65◦E and 1100 km (M41), respectively (Figs. 4i and 11). It is seen 
that, as ηmtz increases, the westward movement distance consistently 
increases, whereas the sinking depth initially deepens and subsequently 
becomes shallower. The maximum difference is ~105 km between the 
distances and ~ 20 km between the sinking depths predicted by these 
geodynamic models. These results indicate the ηmtz has minor effects on 
the structure and sinking depth of the Pacific slab, but more pronounced 
effects on its westward movement distance. It is clearly observed that as 
ηmtz increases, there is an increasing amount of continental lithosphere 
delamination (Figs. 12 and 13). The delaminated lithosphere may attach 
to the top (at ηmtz = 5.0; M39) or both the top and westernmost end (at 
ηmtz ≥ 7.5; M40 – M41) of the Pacific slab (Fig. 13). Accordingly, a larger 
ηmtz is favorable to predicting the DCL inferred seismically (Fig. 2). 
However, an increased ηmtz does not adequately reproduce both the 
Pacific slab and the DCL on its western side, as all predicted westernmost 
positions are significantly distant (> 200 km) from the seismically 
inferred position (~114◦E) on its east side (Fig. 2). Furthermore, all 
predicted bottom depths are considerably deeper (> 400 km) than the 
seismic inference (Fig. 2), and a mantle wedge does not form due to the 
connection of the continental lithosphere with both the slab and the DCL 

(Fig. 13).

4.6. Effects of the viscosity in the middle part of the lower mantle

Some studies have pointed out that, with increasing depth, the vis-
cosity of the lower mantle increases gradually, reaching a maximum 
close to 2000 km, and then decreases gradually (e.g., Forte et al., 2010; 
Mitrovica and Forte, 2004; Steinberger and Calderwood, 2006; Ricard 
and Bai, 1991). Accordingly, in this section, we increase the viscosity 
(ηmlw) in the middle part of the lower mantle, ranging from 1500 to 2500 
km, from 30 (M25) to 50 (M42), 100 (M43) and 150 (M44), in order to 
probe its effects on the Pacific slab subduction dynamics beneath the 
CVP. The westernmost positions and bottom depths are approximately 
117.94◦E and 1100 km (M25), 117.88◦E and 1070 km (M42), 118.57◦E 
and 1025 km (M43), and 118.84◦E and 995 km (M44), respectively 
(Figs. 4j and 14). The maxmimum difference is approximately 80 km for 
the former and 105 km for the latter. These results indicate that the ηmlw 
has noticeable effects on both the westward movement distance and 
sinking depth of the Pacific slab. As ηmlw increases, its sinking depth 
decreases at all times, while the distance increases slightly at first for 

Fig. 8. Present-day (0 Ma) Pacific slab structure in the mantle predicted by the models M25 and M30 – M33. The thick line stands for the − 50 ◦C isotherm. The 
isotherm interval is 200 degrees Celsius.

Fig. 9. Present-day (0 Ma) Pacific slab structure in the mantle predicted by the geodynamic models that incorporate varying slab ages. The thick line stands for the 
− 50 ◦C isotherm. The isotherm interval is 200 degrees Celsius.
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small ηmlw (≤ 50) and then decreases for large ηmlw (≥ 100). All of the 
westernmost positions are located to the west of the seismic inference 
(~120◦E; Fig. 2), suggesting that the geodynamic models that incorpo-
rating varying ηmlw may predict the westernmost position of the Pacific 
slab well. However, all of bottom depths are significantly deeper than 
the seismic inference (≤ 800 km; Fig. 2), implying that it is challenging 
to reasonably reproduce its sinking depth.

The Pacific slab arrives at the 660-km discontinuity at ~20 Ma in all 
of these models (Figs. S8 and S9). Since the increase in the ηmlw reduces 
the sinking velocity of the Izanagi slab, and the sinking depth conse-
quently becomes shallower. When ηmlw ≥ 100 (M43 - M44), since the 
Izanagi slab sinks slow down significantly, unlike the situation for a 

small ηmlw (≤ 50; Fig. S8), the slab does not sink below the Pacific slab. 
Consequently, the westernmost end of the Pacific slab comes into con-
tact with the easternmost end of the Izanagi slab at ~20 Ma (Fig. S9). 
This situation not only causes the bottom of the Pacific slab to contact 
the top of the Izanagi slab in the modern mantle (Figs. 14c and d), but 
also slows down the westward movement of the Pacific slab, which may 
be the main reason for its predicted westernmost positions being closer 
to the east in the modern mantle compared to a small ηmlw (≤ 50) 
(compare Fig. 14a, b and Fig. 14c, d). Therefore, the geodynamic models 
with large ηmlw (≥ 100) do not reproduce the result that the Izanagi slab 
is located below, rather than in contact with, the Pacific slab, as inferred 
from global seismic models such as MIT08 (Li et al., 2008; Li and van der 

Fig. 10. Dynamic process of the Pacific slab subduction predicted by the models (a) M34 with slab age of 50 % to, and (b) M37 with slab age of 150 % to along 
latitude 41.67◦N.
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Hilst, 2010), LLNL_G3Dv3 (Simmons et al., 2012), TX2019slab (Lu et al., 
2019), and GAP_P4 (Obayashi et al., 2013; Fukao and Obayashi, 2013) 
(Fig. S4). Aditionally, all of the models with different ηmlw predict the 
delamination of the continental lithosphere during the subduction of the 
Pacific slab, but the delamination is sporadic, and the delaminated 
lithosphere does not attach to the westernmost end of the Pacific slab 
(Figs. S8 and S9). Thus ηmlw is not a key parameter for predicting the DCL 
whose westernmost postion is located at ~114◦E (Fig. 2).

4.7. Effects of the oceanic asthenosphere density

It is generally assumed in most studies on slab subduction dynamics 
that the oceanic asthenosphere possesses the same density and compo-
sition as the underlying mantle. In other words, the oceanic astheno-
sphere and its underlying mantle exhibit similar thermal and 
compositional buoyancy characteristics (e.g., Zhong and Gurnis, 1995; 
Billen, 2008; Liu and Stegman, 2011; Faccenda and Capitanio, 2013). 
The geodynamic models based on this assumption consistently predict a 
continuous downward flow in the subslab region, indicating the 
entrainment of vast amounts of oceanic asthenosphere material reaching 
deep into the mantle. However, upwelling hot mantle plumes may result 
in a hotter and less viscous oceanic asthenosphere compared to the 
underlying mantle. Typically, its temperature may be 100–200 ◦C 
higher, and consequently, its density and viscosity are approximately 
0.5–1.0 % and 2–3 orders of magnitude lower, respectively (Morgan 
et al., 2007). Morgan et al. (2007) discovered that only a small quantity 
of asthenosphere material (approximately 30 km thick) could recycle 
into the deep mantle following a subducting slab, using both analog and 
numerical models that incorporated a hotter and less viscous oceanic 
asthenosphere (in comparison to the underlying ambient mantle). Sub-
sequently, Liu and Zhou (2015) found that significantly more astheno-
sphere material (exceeding 100 km thick) could be entrained into the 
deep mantle, based on geodynamic models that employed an oceanic 
asthenosphere density anomaly (Δρasth) of − 0.5 % to − 2 % (corre-
sponding to approximately 600 ◦C hotter than the underlying mantle) 
and a viscosity anomaly (Δηasth) up to 3 orders of magnitude lower. Liu 
and Zhou (2015) further proposed that the more negative the Δρasth (i.e., 
the lower the density or the higher the temperature of the oceanic 
asthenosphere relative to the underlying mantle) or the smaller the 
Δηasth (i.e., the higher the viscosity of the oceanic asthenosphere), the 
smaller the dip angle of a subducting slab, making the slab flatter. 
However, the effects of Δηasth are considerably smaller than those of 
Δρasth. Additionally, these are two-dimensional models that not only fail 

to predict the toroidal flow accompanying a subducting slab but also 
neglect specific scenarios, such as paleoplate motions, seafloor age, and 
trench positions, in the context of Pacific plate subduction. Accordingly, 
here we simulate the effects of the oceanic asthenosphere density using 
geodynamic models the data assimilation, in which Δρasth = 0 ~ − 3 %, 
corresponding to the models M25 and M45 – M47 (Table 2). These Δρasth 
values imply that the temperature of the oceanic asthenosphere is 
approximately 0–1000 ◦C higher than that of the underlying mantle. It is 
unreasonable to assume that the oceanic asthenosphere is 1000 ◦C hotter 
than the underlying mantle, but it provides us with an opportunity to 
explore extreme situations.

The Pacific slab structures in the modern mantle, as predicted by the 
models M25 and M45 - M47, exhibit a minimum correlation coefficient 
of 0.89 (Table S4). This indicates that these models predict very similar 
Pacific slab structures, suggesting that Δρasth has minimal effects on the 
predicted structures. The westernmost positions and bottom depths are 
approximately 117.94◦E and 1100 km (M25), 116.91◦E and 1110 km 
(M45), 116.41◦E and 1110 km (M46), and 116.29◦E and 1100 km 
(M47), respectively (Figs. 4k and 15). This result indicates that Δρasth 
has a certain degree of effect on the westward movement distance of the 
Pacific slab but almost no effect on its sinking depth in the mantle. The 
more negative the Δρasth, the longer the westward movement distance, 
but the smaller the increase of the distance. Specially, an increase in 
Δρasth from 0 to − 1 %, − 1 % to − 2 % and − 2 % to − 3 % leads to an 
increase in the distance by 85 km, 40 km and 10 km, respectively. 
Therefore, an increase in the density constrast between the oceanic 
asthenosphere and its underlying mantle (i.e., a more negative Δρasth) 
may moderately increase the westward movement distance of the Pacific 
slab but does not make its sinking depth shallower. All of these models 
(M25, M45 - M47) predict that the westernmost positions of the Pacific 
slab are further west than those observed seismically (~120◦E; Fig. 2), 
and the bottom depths are deeper than 1100 km, which are significantly 
greater than those observed seismically (< 800 km). Furthermore, they 
fail to predict the DCL on the west of the Pacific slab, as inferred from 
seismic imaging (Fig. 2).

The subduction process of the Pacific slab, as predicted by these 
models, has generally been similar since 40 Ma (Figs. S10 and S11). As 
Δρasth becomes more negative, the positive thermal buoyancy attached 
to the Pacific slab increases, resulting in a generally smaller dip angle of 
the slab. However, upon comparing Fig. S10 and Fig. S11, we observe 
that the dip angle does not change strikingly, and at least the change is 
not more noticeable than that reported by Liu and Zhou (2015). We infer 
that this is due to the influence of the Izanagi slab, which exists in the 

Fig. 11. Present-day (0 Ma) Pacific slab structure in the mantle predicted by the geodynamic models that incorporate varying viscosities in the MTZ. The thick line 
stands for the − 50 ◦C isotherm. The isotherm interval is 200 degrees Celsius.
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mantle prior to the subduction of the Pacific slab. It is also observed from 
Figs. S10 and S11 that a more negative Δρasth would lead to stronger 
lithosphere delamination at ~20 Ma. Howbeit, all of these delamination 
materials adhere to the top rather than the westernmost end of the Pa-
cific slab. Perhaps this is the reason why these models do not predict the 
DCL on the west of the Pacific slab, as inferred from seismic imaging.

4.8. Effects of density jump across the 660-km discontinuity

It has been inferred that mantle density increases by 3.8 % - 10.2 % 
across the 660-km discontinuity (Wang et al., 2023; Castle and Creager, 
2000; Deuss, 2009; Dziewonski and Anderson, 1981; Estabrook and 

Kind, 1996; Kato and Kawakatsu, 2001; Lau and Romanowicz, 2021; 
Matsui, 2001; Montagner and Anderson, 1989; Morelli and Dziewonski, 
1993; Shearer and Flanagan, 1999; Yu et al., 2018). This increase in 
density affects the behavior of a subducting slab. Christensen and Yuen 
(1984) employed a two-dimensional finite element model of time- 
dependent convection to study the effects of the density jump (Δρ660) 
across the 660-km discontinuity on slab subduction dynamics. They 
discovered that when Δρ660 ≥ 5 %, a subducting slab may primarily 
stagnate within the MTZ, leading to a depression of 50–200 km in the 
discontinuity; when 2 % ≤ Δρ660 ≤ 5 %, the slab likely partially pene-
trates the discontinuity and plunges several hundred kilometers into the 
lower mantle; and when Δρ660 ≤ 2 %, the slab probably directly 

Fig. 12. Dynamic process of the Pacific slab subduction predicted by the models (a) M25 with ηmtz = 1.0 and (b) M38 with ηmtz = 2.5 along latitude 41.67◦N.
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penetrates the discontinuity and does not stop before arriving at the 
core-mantle boundary. The analogue models presented by Kincaid and 
Olson (1987) demonstrated that the penetration of a subducting slab 
through the 660-km discontinuity is controlled by the ratio of the den-
sities of the slab (ρS), upper mantle (ρU) and lower mantle (ρL), defined 
as R = (ρS - ρL)/(ρS - ρU). When R ≥ 0.5, which corresponds to Δρ660 ≤ 2 
% in the study by Christensen and Yuen (1984), a subducting slab 
penetrates the 660-km discontinuity nearly vertically and directly into 
the lower mantle; when − 0.2 ≤ R ≤ 0.5, corresponding to 2 % ≤ Δρ660 
≤ 5 % in Christensen and Yuen (1984), the slab partially penetrates the 
discontinuity; and when R ≤ − 0.2, corresponding to Δρ660 ≥ 5 % in 

Christensen and Yuen (1984), there is little to no penetration of the 
discontinuity by the slab. These results indicate that the increased 
density across the discontinuity results in an increase in positive buoy-
ancy attached to a subducting slab. The larger the Δρ660, the greater the 
positive buoyancy, and consequently, the probability increases for the 
stagnation of the slab arriving at the 660-km discontinuity in the MTZ. 
Accordingly, we study the effects of Δρ660 on the behavior of the Pacific 
plate subduction. Given that Δρ660 ranges between 3.8 % and 10.2 %, we 
assume Δρ660 = 4 %, 8 %, 10 %, and 15 %, corresponding to the models 
M48, M25, M49 and M50, as listed in Table 2.

The models M48, M25, M49 and M50 predict a similar present-day 

Fig. 13. Dynamic process of the Pacific slab subduction predicted by the models (a) M40 with ηmtz = 7.5 and (b) M41 with ηmtz = 10.0 along latitude 41.67◦N.
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structure of the Pacific slab. However, because of the significant dif-
ferences in westward movement distance and sinking depth, especially 
the latter, the cross-correlation coefficients exhibit large variations 
(Table S5). The predicted westernmost positions and bottom depths are 
approximately 119.78◦E and 1375 km (M48), 117.94◦E and 1100 km 
(M25), 116.20◦E and 960 km (M49), and 116.08◦E and 780 km (M50), 
respectively (Figs. 4l and 16). This result implies that as Δρ660 increases, 
the westward movement distance of the Pacific slab increases notably, 
and the sinking depth becomes significantly shallower. In other words, 
the increase of Δρ660 enhances the probability of slab stagnation within 
the MTZ and reduces the likelihood of the Pacific slab penetrating the 
660-km discontinuity into the lower mantle, which is consistent with the 
previous studies (Christensen and Yuen, 1984; Kincaid and Olson, 
1987). An increase in Δρ660 from 4 % to 15 % leads to an increase in the 
westward movement distance of ~300 km and a decrease in the sinking 

depth of ~600 km. As mentioned earlier, this is the primary reason for 
the significant difference in cross-correlation coefficients between the 
predictions of the geodynamic models with varying Δρ660. In addition, 
when Δρ660 equals 15 %, the predicted bottom depth of the Pacific slab 
is ~780 km, which is consistent with the depth inferred from seimic 
models. Meanwhile, the westernmost position (~116.08◦E) of the Pa-
cific slab predicted by the model with Δρ660 = 15 % is further west than 
the seismic inference (~120◦E; Fig. 2). Accordingly, the model may 
predict the Pacific slab well.

The models with different Δρ660 predict a similar subduction process 
of the Pacific slab since 40 Ma (Figs. 17 and 18). When Δρ660 is too high 
(e.g., 15 %), similar to having an excessively high lower mantle viscosity 
(Fig. 7), it results in a significant decrease in the sinking depth, which 
aligns more closely with seismic inference. However, this also leads to a 
noticeable decrease in the sinking velocity of the Izanagi slab. 

Fig. 14. Present-day (0 Ma) Pacific slab structure in the mantle predicted by the geodynamic models that incorporate varying viscosities in the middle part of the 
lower mantle. The thick line stands for the − 50 ◦C isotherm. The isotherm interval is 200 degrees Celsius.

Fig. 15. Present-day (0 Ma) Pacific slab structure in the mantle predicted by the geodynamic models that incorporate varying density anomalies of the oceanic 
asthenosphere. The thick line stands for the − 50 ◦C isotherm. The isotherm interval is 200 degrees Celsius.

Fig. 16. Present-day (0 Ma) Pacific slab structure in the mantle predicted by the geodynamic models that incorporate varying density jumps across the 660-km 
discontinuity. The thick line stands for the − 50 ◦C isotherm. The isotherm interval is 200 degrees Celsius.
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Consequently, the westernmost end of the Pacific slab contacts with the 
easternmost end of the Izanagi slab at ~10 Ma (Fig. 18), which is 
inconsistent with the observation of the Izanagi slab sinking below the 
Pacific slab as revealed by global seismic tomography (Fig. S4; Li et al., 
2008; Li and van der Hilst, 2010; Simmons et al., 2012; Lu et al., 2019; 
Obayashi et al., 2013; Fukao and Obayashi, 2013). Furthermore, as 
Δρ660 increases, the delamilation of continental lithosphere enhances, 
particularly at ~20 Ma, but these delamilated lithosphere adhere to the 
top rather than the westernmost end of the Pacific slab (Figs. 17 and 18). 
Therefore, it struggles to predict the DCL as shown in Fig. 2 for geo-
dynamic models with varying Δρ660.

5. Remarks and suggested parameters

As depicted in Section 2, the high-speed anomaly zone is inferred to 
be caused by the Pacific slab in its eastern part and the DCL in its western 
part. Therefore, a reasonable geodynamic model should reproduce both 
the Pacific slab and the DCL, which contacts with its westernmost end, as 
shown in Fig. 2. The results in Section 4 suggest that it is relatively 
straightforward to well reproduce the westernmost position of the Pa-
cific slab, as nearly all models listed in Table 2 are capable of doing so. 
However, predicting the DCL and the sinking depth of the Pacific slab is 
more challenging. Accordingly, we provide our remarks and suggestions 
on the parameters to reproduce the sinking depth and the DCL here.

Fig. 17. Dynamic process of the Pacific slab subduction predicted by the models (a) M48 with Δρ660 = 4 % and (b) M25 with Δρ660 = 8 % along latitude 41.67◦N.
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Compared with the γ660, the effect of the γ410 is secondary. The γ410 
has minor effects on the westward movement distance and slight effects 
on the sinking depth of the Pacific slab in the mantle. In general, as γ410 
increases, the westward movement distance decreases, and the sinking 
depth becomes gradually deeper. With the increase of the |γ660|, the 
effect of the γ410 gradually weakens. When |γ660| ≥ 4 MPa/K, its effects 
can be ignored. The γ660 has significant effects on both the westward 
movement distance and the sinking depth of the Pacific slab in the 
mantle. When |γ660| ≤ 5 MPa/K, the westward movement distance in-
creases, while the opposite occurs when |γ660| > 5 MPa/K. However, the 
sinking depth always becomes significantly shallower with the 
increasing |γ660|. The maximum differences exceed 300 km and 600 km, 

respectively, for the westward movement distance and the sinking depth 
within the range of γ660 between − 1 and − 6 MPa/K. When |γ660| ≥ 5 
MPa/K, the main part of the Pacific slab may stagnate in the MTZ. Both 
δh410 and δh660 slightly affect the dynamic process and structure of the 
Pacific slab. All of the geodynamic models with different γ660 or γ410 
cannot predict the DCL. However, the model with a larger γ660 and a 
smaller γ410 favors a better prediction of the sinking depth of the Pacific 
slab. Additionally, though our modeling implies |γ660| ≥ 5 MPa/K, 
considering that the γ660 ranging from − 1.5 to − 3 MPa/K have been 
used in previous predictions of the stagnant Pacific slab beneath East 
Asia (Ma et al., 2019; Mao and Zhong, 2018; Yang et al., 2018; Peng 
et al., 2021a), and the γ660 ranging from − 2.5 to − 3 MPa/K have been 

Fig. 18. Dynamic process of the Pacific slab subduction predicted by the models (a) M49 with Δρ660 = 10 % and (b) M50 with Δρ660 = 15 % along latitude 41.67◦N.

T. Zhu et al.                                                                                                                                                                                                                                      Tectonophysics 896 (2025) 230607 

19 



inferred from seismic observations (Lebedev et al., 2002; Fukao et al., 
2009), we suggest that γ660 is best within the range of − 2.0 to − 3 MPa/ 
K.

The viscosity in the lower mantle (ηlw) notably affects both the 
westward movement distance and sinking depth of the Pacific slab. The 
maximum differences exceed 200 km and 300 km, respectively, for the 
sinking depth and distance over a range of ηlw from 30 to 200. As ηlw 
increases, the sinking depth consistently becomes shallower, while the 
westward movement distance initially decreases and then increases. The 
predicted westernmost position of the Pacific slab is slightly further west 
than the seismic inference for low ηlw (≤ 50), whereas the predicted 
bottom depth is notably deeper than that mapped by seismic tomogra-
phy. A large ηlw (≥ 100) may significantly reduce the sinking depth, but 
at the same time, it may result in the Izanagi slab obviously contacting 
the Pacific slab (Fig. 7), which is inconsistent with the seismic inference 
suggesting that the Izanagi slab has sunk below the Pacific slab (Fig. S4). 
Furthermore, this may lead to the predicted westernmost position being 
noticeably further east than the seismic inference. None of the models 
with different ηlw predict the DCL. Given that the model with a larger ηlw 
favors a better prediction of the sinking depth of the Pacific slab, and 
perhaps its westernmost postion, it is suggested that ηlw is best within the 
range of 30–50 and not exceed 75. The range of ηlw recommended here 
falls within but is significantly narrower than various ranges suggested 
in previous studies. These include ranges of 10–316 for interpreting the 
geoid anomalies (Hager, 1984; Hager et al., 1985; Hager and Richards, 
1989; King and Masters, 1992; Ricard et al., 1993; Liu and Zhong, 2016; 
Liu et al., 2021), 1–100 for interpreting the variations in post-glacial sea- 
level (Cathles, 1975; Nakada and Lambeck, 1989; Tushingham and 
Peltier, 1992; Mitrovica and Peltier, 1993, 1995), 30–250 inferred from 
the inversion of convection-related observables (Forte and Mitrovica, 
2001), 2–250 inferred from joint inversion of geoid/free-air gravity 
anomalies and post-glacial relative sea-level variations (Wu and Peltier, 
1983; Forte and Mitrovica, 1996; Mitrovica and Forte, 1997; Paulson 
et al., 2007), and 30–100 constrained by slab dynamics (Liu et al., 
2021).

The oceanic chemical layer has a bit of an effect on the westward 
movement distance but little effects on the sinking depth. The maximum 
differences are ~40 km and ~ 10 km, respectively, for the distance and 
sinking depth within the range of B6 between 0 and − 1.0. As the 
chemical buoyance of the layer increases, that is, as B6 becomes more 
negative, the westward movement distance of the Pacfic slab decreases 
initially and then increases. None of the models with different B6 predict 
the DCL. Accordingly, the oceanic chemical layer does not play an 
important role in predicting the sinking depth of the Pacific slab and the 
DCL. It is suggested that B6 may adopt a value of − 0.48, which corre-
sponds to the mean density of 3.0 g/cm3 for the Earth’s oceanic crust.

Slab age notably affects both the westward movement distance and 
sinking depth of the Pacific slab. The maximum differences are ~210 km 
and ~ 250 km, respectively, for the distance and sinking depth within 
the range of slab age between 50 %to and 150 %to. As slab age increases, 
the westward movement distance decreases, while the sinking depth 
gradually increases. This result implies that a younger slab is more 
conducive to stagnating in the MTZ and moving a longer distance 
westward. All of the geodynamic models with varying slab ages are 
unable to predict the DCL. Given that the model with a younger slab 
favors a better prediction of the sinking depth of the Pacific slab, it is 
suggested that the slab age is best to adopt the lower limit of the 
reconstructed seafloor age.

The viscosity in the MTZ (ηmtz) primarily influences the westward 
movement distance of the Pacific slab and has a slight effect on its 
sinking depth. It results in maximum differences of ~105 km and ~ 20 
km, respectively, in the distance and sinking depth across a range of ηmtz 
from 1.0 to 10.0. As ηmtz increases, the distance initially increases and 
then decreases, while the sinking depth deepens initially and then 
become shallow. A larger ηmtz (e.g, 7.5) may lead to significant delam-
ination of the continental lithosphere, and the delaminated lithosphere 

may attach to the westernmost end of the Pacific slab. Based on Magni 
and Király (2019), lithosphere delamination was divied into three 
groups: subducting plate delamination, peeling-off and dripping. We 
consider that the delamination discussed here belongs to the dripping or 
convective thinning type. This type is primarily caused by the Rayleigh- 
Taylor instability in compressional stress regimes (Magni and Király, 
2019). Therefore, it may be appropriate to adopt a larger ηmtz when 
predicting the DCL on the western end of the Pacific slab. However, a 
larger ηmtz may also result in the connection of the continental litho-
sphere with the Pacific slab, ultimately leading to the absence of a 
noticeable mantle wedge. Consequently, it is suggested that, under 
comprehensive consideration, the ηmtz is better not to exceed 2.5.

The viscosity (ηmlw) in the middle part of the lower mantle has 
noticeable effects on both the westward movement distance and sinking 
depth of the Pacific slab. It results in maximum differences of ~80 km 
and ~ 105 km, respectively, in the distance and sinking depth across a 
range of ηmlw from 30 to 150. An increase in ηmlw leads to a decrease in 
both the westward movement distance and the sinking depth. However, 
a large ηmlw (≥100), like a large ηlw, may lead to the noticeable decrease 
in sinking velocity of the Izanagi slab, and consequently cause the Iza-
nagi slab to contact the Pacific slab. All of the geodynamic models with 
different ηmlw cannot predict the DCL. Since the model with a larger ηmlw 
favors a better prediction of the sinking depth of the Pacific slab, it is 
suggested that ηmlw is best within the range of 30–50 and not exceed 75. 
This suggested range of ηmlw is significantly narrower than those inferred 
from joint inversions of global convection-related observables and GIA 
data (4–226, Mitrovica and Forte, 2004; 14–333, Forte et al., 2010), 
comparable to those inferred from mineral physics and surface obser-
vations (29–64, Steinberger and Calderwood, 2006), and wider than 
those derived on the basis of global long wavelength geoid anomalies 
(8–45, Ricard and Bai, 1991) and the combination of geoid and GIA data 
(5–10, Forte and Mitrovica, 1996).

The oceanic asthenosphere density (Δρasth) has a notable effect on 
the westward movement distance, but has almost no effect on the 
sinking depth of the Pacific slab. It results in maximum difference of 
~140 km in the distance over a range of Δρasth from 0 to − 3 %. As Δρasth 
becomes more negative, the westward movement distance increases. A 
more negative Δρasth (e.g, − 2 %) may cause significant lithosphere 
delamination (i.e., dripping; Magni and Király, 2019), and the delami-
nated lithosphere may adhere to the westernmost end of the Pacific slab, 
indicating that the model with a more negative Δρasth favors predicting 
the DCL. Therefore, it is suggested that Δρasth may adopt a reasonable 
and more negative value.

The density jump across the 660-km discontinuity (Δρ660) signifi-
cantly affects both the westward movement distance and sinking depth 
of the Pacific slab. An increase in Δρ660 leads to a noticeable decrease in 
the distance and sinking depth. An increase in Δρ660 from 4 % to 15 % 
leads to a maximum difference of ~300 km for the westward movement 
distance and ~ 600 km for the sinking depth. A larger Δρ660 (e.g, 15 %) 
leads to a significantly shallower sinking depth, while simultaneously 
facilitating the connection of the easternmost end of the Izanagi slab 
with the westernmost end of the Pacific slab. Additionally, a larger Δρ660 
(e.g., 10 %) may lead to lithosphere delamination (i.e., dripping; Magni 
and Király, 2019), with the delaminated material potentially adhering to 
the westernmost end of the Pacific slab. In other words, the geodynamic 
model with a larger Δρ660 favors predicting both a reasonable sinking 
depth of the Pacific slab and the DCL. Therefore, it is suggested that 
Δρ660 may adopt a value of ~10 % but should not exceed 15 %. This 
suggested range of Δρ660 is notably beyond the previous inference of 
3.8–10.2 % (Wang et al., 2023; Castle and Creager, 2000; Deuss, 2009; 
Dziewonski and Anderson, 1981; Estabrook and Kind, 1996; Kato and 
Kawakatsu, 2001; Lau and Romanowicz, 2021; Matsui, 2001; Mon-
tagner and Anderson, 1989; Morelli and Dziewonski, 1993; Shearer and 
Flanagan, 1999; Yu et al., 2018).

In summary, a geodynamic model with a larger |γ660|, ηlw, ηmlw, and/ 
or Δρ660 is beneficial for predicting a reasonable sinking depth of the 
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Pacific slab, while a model with a more negative Δρasth and/or a larger 
Δρ660 favors predicting the DCL.
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